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Abstract 
In this paper we give an extension of the famous Enestrom-Kakeya  Theorem, which generalizes many 

generalizations of  the said theorem as well. 
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     Introduction
A famous result giving a bound for all the zeros of a polynomial with real positive monotonically decreasing 

coefficients is the following result known as Enestrom-Kakeya theorem [4]: 

Theorem A: Let 
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Then all the zeros of P(z) lie in the closed disk 1z . 

If the coefficients are monotonic but not positive, Joyal, Labelle and Rahman [3] gave the following generalization 

of Theorem A: 

Theorem B: Let 
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Then all the zeros of P(z) lie in the closed disk 
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Aziz and Zargar [1] generalized Theorem B by proving the following result: 

Theorem C: Let 



n

j

j

j zazP
0

)( be a polynomial of degree n such that for some 1k , 
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Then all the zeros of P(z) lie in the closed disk 
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Gulzar [2] generalized Theorem C to polynomials with complex coefficients and proved the following results: 

Theorem D: Let 
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)( be a polynomial of degree n  with jja )Re(  ,  

nja jj ,......,1,0,)Im(     such that for some  0,1k , 
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Then all the zeros of P(z) lie in the closed disk 
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Theorem E: Let 
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Recently, Liman and Shah [5]  proved the following generalization of Theorem C for polynomials having real 

coefficients: 

Theorem F: Let 
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Then all the zeros of P(z) lie in  
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The aim of this paper is to apply Theorem F to polynomials with complex coefficients and prove 

Theorem 1: Let 
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Then all the zeros of P(z) lie in  
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    If   ja  is real i.e. njj ,......,1,0,0  ,  we immediately get the following result: 

Corollary 1: Let 
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Remark 1: For k=1, 1 , Cor. 1 reduces to Theorem F. For t=1, Theorem 1 reduces to Theorem D. 

   Applying Theorem 1 to the polynomial –iP(z), we get the following result: 

Corollary 2: Let 
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Then all the zeros of P(z) lie in  
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Remark 2: For t=1, Theorem 1 reduces to Theorem E. 

   Taking  k=1, we get the following result from Theorem 1: 

Corollary 3: Let 
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Then all the zeros of P(z) lie in  
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   For other different values of the parameters in the above results, we get many other interesting results. 

 

Proofs of Theorems 
Proof of Theorem 1: Consider the polynomial 

F(z)=(1-z)P(z)  
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For  1z , we have by using  the hypothesis       
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This shows that the zeros of F(z) of modulus greater than 1 lie in  
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Since the zeros of F(z) less than or equal to 1 also satisfy the above inequality, it follows that all the zeros of F(z) lie 

in 

http://www.ijesrt.com/


[Gulzar et al., 3(5): May, 2014]   ISSN: 2277-9655 

                                                                                                 Scientific Journal Impact Factor: 3.449 
   (ISRA), Impact Factor: 1.852 

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology 

[360-364] 

 

               

n

n

j

n

j

jjjn

n

n

a

tkt

a
ktz

 


 





1

0

000 2)()1()(2

)1(





  . 

Since the zeros of P(z) are als the zeros of F(z), it follows that all the zeros of P(z) lie in 
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That proves the result. 
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